Core 1 Basic Algebra Questions – Mainly Quadratics

- 3 (a) (i) Express $x^2 4x + 9$ in the form $(x p)^2 + q$, where p and q are integers.
 - (ii) Hence, or otherwise, state the coordinates of the minimum point of the curve with equation $y = x^2 4x + 9$. (2 marks)
- 4 The quadratic equation $x^2 + (m+4)x + (4m+1) = 0$, where m is a constant, has equal roots.
 - (a) Show that $m^2 8m + 12 = 0$. (3 marks)
 - (b) Hence find the possible values of m. (2 marks)
- 2 (a) Express $x^2 + 8x + 19$ in the form $(x + p)^2 + q$, where p and q are integers. (2 marks)
 - (b) Hence, or otherwise, show that the equation $x^2 + 8x + 19 = 0$ has no real solutions. (2 marks)
 - (c) Sketch the graph of $y = x^2 + 8x + 19$, stating the coordinates of the minimum point and the point where the graph crosses the y-axis. (3 marks)
 - (d) Describe geometrically the transformation that maps the graph of $y = x^2$ onto the graph of $y = x^2 + 8x + 19$. (3 marks)
- (ii) Find the values of k for which the equation

$$x^2 - 2(k+1)x + 2k^2 - 7 = 0$$

has equal roots. (4 marks)

- 7 The quadratic equation $(k+1)x^2 + 12x + (k-4) = 0$ has real roots.
 - (a) Show that $k^2 3k 40 \le 0$. (3 marks)
 - (b) Hence find the possible values of k. (4 marks)

- 3 (a) (i) Express $x^2 + 10x + 19$ in the form $(x+p)^2 + q$, where p and q are integers.
 - (ii) Write down the coordinates of the vertex (minimum point) of the curve with equation $y = x^2 + 10x + 19$. (2 marks)
 - (iii) Write down the equation of the line of symmetry of the curve $y = x^2 + 10x + 19$. (1 mark)
 - (iv) Describe geometrically the transformation that maps the graph of $y = x^2$ onto the graph of $y = x^2 + 10x + 19$.
 - (b) Determine the coordinates of the points of intersection of the line y = x + 11 and the curve $y = x^2 + 10x + 19$. (4 marks)
- 7 The quadratic equation

$$(2k-3)x^2 + 2x + (k-1) = 0$$

where k is a constant, has real roots.

(a) Show that
$$2k^2 - 5k + 2 \le 0$$
. (3 marks)

(b) (i) Factorise
$$2k^2 - 5k + 2$$
. (1 mark)

(ii) Hence, or otherwise, solve the quadratic inequality

$$2k^2 - 5k + 2 \le 0$$
 (3 marks)

Core 1 Basic Algebra Answers – Mainly Quadratics

3(a)(i)	$ (x-2)^2 + 5 $	B1 B1	2	p = 2 $ q = 5$
(ii)	Minimum point (2, 5) or $x = 2$, $y = 5$	B2√	2	B1 for each coordinate correct or ft Alt method M1, A1 sketch, differentiation
4(a)	$(m+4)^2 = m^2 + 8m + 16$	B1		Condone $4m + 4m$
	$(m+4)^2 = m^2 + 8m + 16$ $b^2 - 4ac = (m+4)^2 - 4(4m+1) = 0$ $m^2 + 8m + 16 - 16m - 4 = 0$	M1		$b^2 - 4ac$ (attempted and involving m's and no x's) or $b^2 - 4ac = 0$ stated

4(a)	$(m+4)^2 = m^2 + 8m + 16$	B1		Condone $4m + 4m$
	$b^{2} - 4ac = (m+4)^{2} - 4(4m+1) = 0$ $m^{2} + 8m + 16 - 16m - 4 = 0$	M1		$b^2 - 4ac$ (attempted and involving m's and no x's) or $b^2 - 4ac = 0$ stated
	$\Rightarrow m^2 - 8m + 12 = 0$	A1	3	AG (be convinced – all working correct- = 0 appearing more than right at the end)
(b)	(m-2)(m-6) = 0 m=2, $m=6$	M1 A1	2	Attempt at factors or quadratic formula SC B1 for 2 or 6 only without working
	Total		5	

2(a)	$(x+4)^2 +3$	B1		p = 4 $q = 3$
	+3	B1	2	q = 3
(b)	$(x+4)^2 = -3$ or "their" $(x+p)^2 = -a$	M1		Or discriminant = 64 –76
	$(x+4)^2 = -3$ or "their" $(x+p)^2 = -q$ No real square root of -3	A1	2	Disc < 0 so no real roots (all correct figs)
(a)	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			
(c)	19 Minimum (– 4, 3)	B1√		ft their $-p$ and q (or correct)
	graph	В1		Parabola (vertex roughly as shown)
	<u>−4</u> ×	B1	3	Crossing at $y = 19$ marked or $(0, 19)$
				stated
(d)	Translation (and no additional transf'n)	E1		Not shift, move, transformation, etc
(4)		M1		One component correct eg 3 units up
	through -4	A1	3	All correct – if not vector – must say 4
	[3]			units in negative x- direction, to left etc
	Total		10	

(ii)	$4(k+1)^2 - 4(2k^2 - 7)$	M1		" $b^2 - 4ac$ " in terms of k (either term correct)
	$4k^2 - 8k - 32 = 0$ or $k^2 - 2k - 8 = 0$	A1		$b^2 - 4ac = 0 $ correct quadratic equation in k
	(k-4)(k+2) = 0	m1		Attempt to factorise, solve equation
	k = -2 , $k = 4$	A1	4	SC B1, B1 for -2, 4 (if M0 scored)

	Total		7	
	A0 for $-5 < k < 8$ or two separate inequalities unless word AND used			
	Sketch or sign diagram correct , must have 8 and -5 $-5 \le k \le 8$	M1 A1	4	+ve -ve +ve -5 8
(b)	(k-8)(k+5) Critical points 8 and -5	M1 A1		Factors attempt or formula
	$36 - (k^2 - 3k - 4) \geqslant 0$ $\Rightarrow k^2 - 3k - 40 \leqslant 0$	A1	3	AG (watch signs carefully)
	Real roots when $b^2 - 4ac \ge 0$	B1		Not just a statement, must involve k
7(a)	$b^2 - 4ac = 144 - 4(k+1)(k-4)$	M1		Clear attempt at $b^2 - 4ac$ Condone slip in one term of expression

3(a)(i)	$(x+5)^2$	B1		p = 5
	_6	B1	2	q = -6
(ii)	$x_{\text{vertex}} = -5 \text{ (or their } -p \text{)}$ $y_{\text{vertex}} = -6 \text{ (or their } q \text{)}$	B1√ B1√	2	may differentiate but must have $x = -5$ and $y = -6$. Vertex $(-5, -6)$
(iii)	x = -5	B1	1	
(iv)	Translation (not shift, move etc)	E1		and NO other transformation stated
	through $\begin{bmatrix} -5 \\ -6 \end{bmatrix}$ (or 5 left, 6 down)	M1 A1	3	either component correct M1, A1 independent of E mark
(b)	$x + 11 = x^2 + 10x + 19$			quadratic with all terms on one side of equation
	$\Rightarrow x^2 + 9x + 8 = 0$ or $y^2 - 13y + 30 = 0$	M1		
	(x+8)(x+1)=0 or $(y-3)(y-10)=0$	m1		attempt at formula (1 slip) or to factorise
	$ \begin{vmatrix} x = -1 \\ y = 10 \end{vmatrix} $	A1 A1	4	both x values correct both y values correct and linked
				SC (-1,10) B2, (-8,3) B2 no working
	Total		12	

7(a)	$b^2 - 4ac = 4 - 4(k - 1)(2k - 3)$	M1		(or seen in formula) condone one slip
	Real roots when $b^2 - 4ac \geqslant 0$	E1		must involve $f(k) \ge 0$ (usually M1 must be earned)
	$4-4(2k^2-5k+3) \ge 0$ $\Rightarrow -2k^2+5k-3+1 \ge 0$ $\Rightarrow 2k^2-5k+2 \le 0$			
	$\Rightarrow -2k^2 + 5k - 3 + 1 \geqslant 0$			at least one step of working justifying ≤ 0
	$\Rightarrow 2k^2 - 5k + 2 \leqslant 0$	A1	3	AG
(b)(i)	(2k-1)(k-2)	B1	1	
(ii)	(Critical values) $\frac{1}{2}$ and 2	B1√		ft their factors or correct values seen on diagram, sketch or inequality or stated
	$\frac{+}{\frac{1}{2}}$ $\frac{-}{2}$ $\frac{+}{2}$	M1		use of sketch / sign diagram
	\Rightarrow 0.5 \leqslant $k \leqslant$ 2	A1	3	M1A0 for $0.5 < k < 2$ or $k \ge 0.5$, $k \le 2$
	Total		7	